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Monte Carlo test of a hyperscaling relation for the two- 
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56100, Italy 
$ Department of Physics, Princeton University, Princeton, NJ 08544, USA 
9 Department of Physics, New York University, 4 Washington Place, New York, 
NY 10003, USA 

Received 4 May 1990 

Abst rac t .  By using a novel Monte Carlo algorithm which uses non-local moves to 
decrease the critical slowing-down, w e  simulate twedimensional self-avoiding walks 
(SAWS) in a variable-length fixed-endpoint ensemble. This allows us to determine 
with reasonable accuracy the critical exponent asinb. As a byproduct, we obtain also 
accurate measurements of the exponent U and the connective constant p.  We thus 
get a direct check of the hyperscaling relation dv = 2 - asing. Estimates of a,ing 
and p are obtained by a maximum-likelihood fit which combines data generated at 
different fugacities. 

Over the past decade, great progress has been made in improving the available preci- 
sion in Monte Carlo estimates of the critical behaviour of statistical mechanical models. 
In part this progress has been due to the vast increases in available computer power; 
but probably inore important (a t  least in  the long r u n )  has been the development of 
new and vastly more efficient algorithms [l]. 

In [ a ,  31 we have introduced a new Monte Carlo procedure to sample the ensemble 
of self-avoiding walks (SAWS) with variable length and fixed endpoints. Our algorithm 
is a hybrid of an earlier algorithm [4-61, whose elementary moves are local deformations 
of the SAW, with non-local moves that cut the walk into pieces and reassemble them 
(see also [7-91). 

The purely local algorithm, hereafter called BFACF, shows a severe critical slowing- 
down, more precisely [3, section 3.11 

where T is the integrated autocorrelation time (for suitable observables) and ( N )  is 
the average length of the walk. The introduction of non-local moves, inspired by the 
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pivot algorithm [lo] for generating walks wit.h fixed length and free endpoints, has the 
effect of speeding up the slowest modes of the BFACF algorithm and thereby changing 
the dynamic universality class of the algorithm. Indeed, for an optimal choice of the 
percentage of non-local moves we could obtain 

in dimension d = 2.  In practice at  (N)  M 150 there is already a factor-of-6 reduction in 
the CPU time to obtain a fixed statistical error, with respect to the BFACF algorithm. 

In this paper we show concretely how this algorithmic improvement translates into 
a reduced statistical error in  our estimates of static critical quantities, compared to a 
previous study [ll] using the BFACF algorithm. Our principal concern is, as before, 
the critical exponent aaing, which governs the critical behaviour of the SAW analogue 
of the singular part of the specific heat. This exponent can be efficiently estimated 
only in a variable-length fixed-endpoint ensemble. As a byproduct we also obtain 
estimates of the connective constant p and the critical exponent U. (These quantities 
can, however, be estimat>ed more efficiently by other algorithms: see [12] for 14 and 
[lo] for v.) In particular, we can test the hyperscaling relation 

dv = 2 - aaing (3) 

as discussed in more detail in [ll]. I n  this paper we study dimension d = 2 (square 
lattice); this is a warm-up for a sbudy (now in progress) of d = 3,4.  

Our ensemble consists of all SAWS (of arbitrary length) starting at  the origin and 
ending at a chosen point 2, with probability 

np(w)  = q @ > E ) - l  ( I w l +  1)P'"'. (4) 

Here IwJ denotes bhe number of bonds in the walk w ,  /3 is a user-chosen fugacity, and 

N 

is the partition function for this ensemble, where cN(t) is the number of N-step SAWS 
starting from the origin and endhie; at E .  It is expected that ~ ~ ( 2 )  has the asymptotic 
behaviour 

cN(+) - pNNQ6lna-'  2 fixed # 8 (6) 
as N - sot. Here we take L' to be a nearest neighbour of the origin. 

in [12, section 4.21. We assume that. for N > Nmin the relation 
To estimate y and aaing we adopt the muimum-likelihood method, as suggested 

(7) 
C N ( 2 )  = { t a l ( a ) / ~ ]  for N odd 

for N even 0 
holds, where thanks to a1 we miiiiic a correction to scaling that is difficult to make 
more precise within our errors. By varying Nmin and al  we can probe the sensitivity 
of our estimates to corrections to scaling. 

t Hare N and t are Maumed to haw the aame parity modulo 2, dnce othemiae c ~ ( t )  = 0 .  
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In our case we have at  our disposal measurements obtained from runs at  various 
values of the fugacity p. Maximum-likelihood estimators ji and & are obtained by 
solving for each Nmin and a l  the two coupled equations 

i i 

where li is the number of 'effectively independent' measurements available for N > 
Nmin at fugacity p i ,  which are used to compute the observed averages ( and 
( .)p,.a,B are the theoretical averages computed from the probability distribution (4) 
restricted to  N > Nmin, with the c N ( 2 )  as in (7). The statistical error bars on ji and 
& are obtained from maximum-likelihood theory [12, section 4.21. 

In tables 1 and 2 we report, respectively, (N)obs and (log N)obs for various /3 and 
Nmin, along with their t r u e  statistical errors (i.e. taking proper account of autocor- 
relations). These raw data may be useful to readers who wish to reanalyse our data 
(e.g. using different methods to account for corrections to scaling), or to readers plan- 
ning their own simulations. In ta,ble 3 we give the number of 'effectively independent' 
measurements in our data, that is, the total number of iterations divided by twice 
the integrated autocorrelation time T , , ~ , ~ .  In tables 4 and 5 we give, respectively, the 
estimators ji and &, as funct,ions of Nmin and u l .  

Table 1. (N)ob ,  as a function of 0 and the cut "in. Errors are f one standard 
deviation. 

Nmi n 

20 
30 
40 
50 
60 
70 
80 
90 

100 
110 

0.3744 

79.57f0.91 
92.07fl.Cl3 
103.94f 1.15 
115.57f1.28 
126.84f1.41 
137.98f 1 .5  5 
148.96f 1.69 
159.75f1.84 
1 i o  .4 Tf 2 .OO 
181.15f2.18 

0.3760 

105.02fl  $09 
118.28f1.20 
130.9M1.30 
142.87f1.40 
154.58f1.51 
166.04f1.61 
177.27f1.72 
188.43f1.83 
199.31f1.94 
210.15f2.06 

0.3771 

147.62f1.60 
162.23f1.71 
175.8Ok1.82 
188.77f1.93 
201.22f2.03 
213.52f2.14 
225.45f2.24 
237.07f2 -35 
248.65f2.45 
260.05f2.56 

0.3778 

210.93k3.74 
227.295396 
242.27f4.15 
256.55f4.34 
270.20f4.53 
283.66f4.71 
296.62 f4 .89  
309.19f5.07 
321.64f5.24 
333.98f5.42 

Using the flatness critertos a.dvocatecl in [12, sections 4.2 and 5.31 and [13], we find 
that corrections to scaling are reasonably well taken into account with -1.5 5 u1 5 - 
0.5,  yielding the estimates 

p = 2.638 15 k 0.000 08 & 0.000 36 

= 0.497 & 0.017 & 0.034 

where the first error is the systematic error due to omitted corrections to scaling (95% 
subjective confidence limit as defined in [12, footnote 171) and the second error is the 
statistical error (95% confidence limit) evaluated at  Nmin = 60. 
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Table 2 .  (IogN)obj as a function of /3 and the cut "in. Errors are f one standard 
deviation. 

P 

0.3744 
~ 

0.3760 

20 
30 
40 
50 
60 
70 
80 
90 

100 
110 

4.122f0.009 
4.326k0.009 
4.485f0.009 
4.617f0.009 
4.730fO.009 
4.829f0.009 
4.918f0.009 
4.997f0.010 
5.070f0.010 
5.138f0.010 

4.337f0.009 
4.520f0.009 
4.664f0.008 
4.782f0.008 
4.885k0.008 
4.975f0.008 
5.055f0.008 
5.129f0.008 
5.196f0.008 
5.257f0.008 

0.3771 

4.599f0.010 
4.761k0.009 
4.888f0.009 
4.995f0.009 
5.086f0.008 
5.167f0.008 
5.240f0.008 
5.306f0.008 
5.367f0.008 
5.423f0.008 

0.3778 

4.872f0.016 
5.016f0.015 
5.128f0.015 
5.223f0.014 
5.305f0.014 
5.378f0.014 
5.444f0.013 
5.503f0.013 
5.558f0.013 
5.609f0.013 

Table 3. Number of 'effectively independent' measurements obtained for each /3, as 
a function of the cut ",in, Also indicated are the total number of iterations in the 
combined runs at each 4. 

20 
30 
40 
50 
60 
70 
80 
90 

100 
110 

P 

0.3744 

21051 
17082 
141w 
11753 
9887 
8361 
7106 
6068 
51% 
4458 

0.3760 0.3771 0.3778 

30.546 
26166 
22694 
1989'4 
17534 
15530 
13809 
12306 
11011 
9866 

33947 
30310 
27371 
24888 
22755 
20859 
19194 
17719 
163 76 
15164 

15353 
14111 
13087 
12200 
11422 
10716 
10087 
9519 
8994 
8507 

Total 
Iterations ( lo9)  8.2 17.2 -17.5 32.7 

By fixing p at  the best available estimate [14] p = 2.638 1585, we get a better 
estimate for asing: 

as,ng = 0.496 If 0.009 zt 0.015. (11) 

Conversely, by fixing asing = f as expected [15], we get a better estimate for p :  

p = 2.638 12 z t  0.000 07 * 0.000 1 6 .  (12) 

As a byproduct of our simulations, we can obtain estimates of the critical exponent 
v governing the size of typical SAWS.  The mean-square radius of gyration 
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Table 4.  Maximum-likelihood estimator ,i~ as a function of the parameter ay and 
the cut "in. Values in boldface indicate the 'flatness region'. Statistical error Ab 
is a 95% confidence interval (20). 

a1 

"in -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 Ab 

20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

2.63826 
2.63821 
2.63818 
2.63816 
2.63816 
2.63814 
2.63813 
2.63815 
2.63817 
2.63819 

2.63822 
2.63818 
2.63816 
2.63814 
2.63815 
2.63813 
2.63813 
2.63815 
2.63817 
2.63818 

2.63819 
2.63816 
2.63814 
2.63813 
2.63814 
2.63812 
2.63812 
2.63814 
2.63816 
2.63818 

2.63816 
2.63814 
2.63812 
2.63812 
2.63813 
2.63811 
2.63811 
2.63813 
2.63815 
2.63817 

2.63812 
2.63811 
2.63811 
2.638 10 
2.63812 
2.63810 
2.63810 
2.63812 
2.63815 
2.63816 

2.63809 
2.63809 
2.63809 
2.63809 
2.63811 
2.63809 
2.63809 
2.63812 
2.63814 
2.63816 

2.63805 
2.63807 
2.63807 
2.63808 
2.63810 
2.63808 
2.63809 
2.6381 1 
2.63814 
2.63815 

2.63802 
2.63805 
2.63806 
2.63806 
2.63809 
2.63807 
2.63808 
2.63810 
2.63813 
2.63815 

0.0002 5 
0.00028 
0.00031 
0.00034 
0.00036 
o.ooa39 
0.00042 
0.00044 
0.00047 
0.00050 

Table 5.  Maximum-likelihood estimator & as a function of the parameter a1 and 
the cut "in. Values in boldface indicate the 'flatness region'. Statistical error A& 
is a 95% confidence interval (20). 

~~ ~~~~ ~~ 

A',,, -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 A b  

20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

0.4826 
0.4878 
0.4912 
0.4931 
0.4922 
0.4964 
0.4967 
0.4936 
0.4906 
0.4884 

0.4879 
0.4919 
0.4945 
0.4960 
0.4948 
0.4987 
0.4988 
0.4956 
0.4924 
0.4901 

0.4931 
0.4959 
0.4979 
0.4989 
0.4974 
0.5010 
0.5009 
0.4976 
0.4942 
0.4918 

0.4982 
0.4999 
0.5012 
0.5017 
0.4999 
0.5033 
0.5031 
0.4995 
0.4960 
0.4935 

0.5033 
0.5038 
0.5045 
0.5046 
0.5024 
0.5056 
0.5051 
0.5014 
0.4978 
0.4952 

0.5083 
0.5077 
0.5077 
0.5074 
0.5049 
0.5079 
0.5072 
0.5033 
0.4596 
0.4969 

0.5133 
0.5116 
0.5110 
0.5103 
0.5074 
0.5102 
0.5093 
0.5053 
0.5014 
0.4986 

0.5182 
0.5155 
0.5142 
0.5131 
0.5100 
0.5124 
0.5114 
0.5072 
0.5032 
0.5002 

0.0159 
0.0203 
0.0248 
0.0295 
0.0344 
0.0396 
0.0451 
0.0509 
0.0570 
0.0635 

where 

is believed to  have the asymptotic behaviour 

( S i )  - N2" 

as N -, 00. In addition, for our two-dimensional walks we can define the s igned  area 
d ( w )  enclosed by the closed loop ( w o l w l , .  . . ,wN, wO)) namely 

where wN+l  E wo and the superscripts refer to the one- and two-components of vectors 
in Z2. Clearly ( A )  = 0 by refiection symmetry. I t  is believed tha t  (IdI) has the 
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asymptotic behaviour 

as N + CO. See also [16]. 

to  the relations 
To estimate the exponent v we made a least-squares fit of the data  with N > Nmin 

= 2vlog(N + b,) + logb, 

= 2vlog(N + c1) + logc, (log 

with bl,cl  fixed. Note that once more we are simulating corrections to  scaling by 
means of a simple 1/N correction. 

In table 6 we show the estimates i. obtained from measurements of the radius 
of gyration S,. These estimates agree with those of reference [ll], but now it has 
been possible t o  penetrate deeper into the critical regime. It appears that  the value 
b ,  ez 0.30 accounts well for the corrections to scaling, a t  least in the regime of N probed 
by our simulations (50 5 N 5 500). The curves for b ,  above or below 0.30 show, 
as expected, a slight slope in opposite directions. The whole picture is remarkably 
smooth, and gives us confidence in the quality of the results. We conclude that 

v = 0.7505 k 0.0007 k 0.0006 (20) 

(21) bo = 0.0548 zk 0.0004 i 0.0003. 

Table 0. Least-squares estimat.or t as a function of the parameter bl and the cut 
"in, derived from the data of the squared radiw of gyration SL. Statistical error 
At is a 95% confidence interval (20). 

Nmi n 0.10 At 

20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

0.74854 
0.74903 
0.74925 
0.74943 
0.74966 
0.74972 
0.74967 
0.74979 
0.74986 
0.74987 

0.15 

0.74903 
0.74941 
0.74956 
0.74970 
0.74990 
0.74993 
0.74986 
0.74997 
0.75002 
0.75002 

0.20 

0.74951 
0.74978 
0.74987 
0.74997 
0.75014 
0.75014 
0.75006 
0.75014 
0.75019 
0.75017 

0.25 

u.75000 
0.75016 
0.75018 
0.7 502 4 
0.75037 
0.75035 
0.75025 
0.75032 
0.75035 
0.75033 

0.30 

0.75049 
0.75054 
0.75049 
0.75051 
0.75061 
0.75057 
0.75044 
0.75050 
0.75051 
0.75048 

0.35 

0.75097 
0.75091 
0.75081 
0.75077 
0.75085 
0.75078 
0.75064 
0.75068 
0.75068 
0.75063 

0.40 

0.75146 
0.75129 
0.75112 
0.75104 
0.75108 
0.75099 
0.75083 
0.75085 
0.75084 
0.75079 

0.45 

0.75194 
0.75166 
0.75143 
0.75131 
0.75132 
0.75120 
0.75102 
0.751 03 
0.75101 
0.75094 

0.00033 
0.00040 
0.00048 
0.0005 5 
0.00062 
0.00070 
0.00077 
0.00085 
0.00093 
0.00101 

The results of a similar analysis for the area ldl are exhibited in table 7. In 
this case there is a substantial curvature as a function of Nminr so that the potential 
systematic error is much larger. We estimate 

v = 0.7511 i 0.0012 i 0.0008 

c, = 0.1351 & 0.0020 -f 0.0011. 
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Table 7. Least-squares estimator t as a function of the parameter b l  and the cut 
"in, derived from the data of the area [Al. Statistical error A t  is a 95% confidence 
interval (26). 

Nmin 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 At 

20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

0.75008 
0.74939 
0.74935 
0.74593 
0.75007 
0.75020 
0.75015 
0.75024 
0.75052 
0.75065 

0.75056 
0.75027 
0.75015 
0.75020 
0.75031 
0.75041 
0.75034 
0.75042 
0.75068 
0.75081 

0.75105 
0.75064 
0.75046 
0.75046 
0.75055 
0.75062 
0.75054 
0.75059 
0.75085 
0.75095 

0.75153 
0.75 101 
0.75077 
0.75072 
0.75078 
0.75082 
0.75073 
0.75077 
0.75101 
0.75111 

0.75201 
0.75138 
0.75108 
0.75099 
0.75102 
0.75104 
0.75093 
0.75094 
0.75117 
0.75126 

0.75250 
0.75176 
0.75139 
0.75126 
0.75125 
0.75125 
0.75112 
0.75112 
0.75134 
0.75142 

0.75321 
0.75220 
0.75170 
0.75150 
0.75143 
0.75137 
0.75125 
0.75125 
0.75147 
0.75155 

0.75357 
0.75241 
0.75186 
0.75161 
0.751 51 
0.75142 
0.75133 
0.75132 
0.75153 
0.75162 

0.00042 
0.00052 
0.00061 
0.00070 
0.00079 
0.00088 
0.00098 
0.00108 
0.00118 
0.00129 

Our estimates of p ,  crSlng and v are more precise than those in [ll] by a factor 6.6, 
3.7 and 8 . 5 ,  respectively. The CPU time w a s  roughly the same in both cases (of the 
order of 1000 hours on a VAX 8650 running VMS Fortran). 

While this is about the best one can do nowadays for the determination of a,,, , 
better determinations of p and v can be obtained by using other Monte Carlo a!- 
gorithms (with less severe critical slowing-down) working in different ensembles. In 
particular, the Berretti-Sokal algorithm for the variable-length free-endpoint ensem- 
ble [12] is most suited for the computation of p, while the pivot algorithm for the 
fixed-length free-endpoint ensemble [lo] is by far the most efficient algorithm for the 
study of v. 

For the two-dimensional SAW, the exponents a,,,g = f and v = 4 are believed to  
be exact [15]. But it is worthwliile to  examine the numerical determinations of  CY,,,^, v 
and p ,  as an indicator of t,he precision and reliability of the various numerical methods. 
An unbelievably precise estimate of p and comes from the exact enumeration of 
self-avoiding polygons (SAPS) 011 the square lattice up to  N = 56, a heroic computation 
by Guttmann and Enting [14]. They estimate 

p = 2.638 159 & 0.000 005 (24) 

(25) 

(26) 

a,ing = 0.500 06 f 0.000 06 

v = 0.753 f 0 . 0 0 7 .  

By assuming crSing = f ,  they get a more precise estimate of p :  

p = 2.638 1585 zk 0.000 0010.  (27) 

These estimates are in perfect agreement with ours; for p and aSing they are vastly 
more precise, while for v they are significantly less preciset. In the past year, Enting 
and Guttmann [17] obtained an even more precise estimate of asing, by enumerating 

t These comparisons of error bars should, however, be interpreted cautiously. Guttmann and En& 
ing [14] do not attach any specific confidence level (even an admittedly subjective one) to their error 
bar, so its meaning is ambiguous. Our error bars are, by contrast, always 95% confidence limits. 
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SAPS on the honeycomb lattice up to N = 82: using the exactly known connective 
constant p = (2  + a)’/’ [15,18], they found 

asing = 0.499 98 f 0.000 02 .  (28) 

Other methods yield an accuracy comparable to  ours. By a finite-size-scaling method 
(also called phenomenological renormalisation), Derrida [I91 obtained 

p = 2.638 17 & 0.000 21 

U = 0.7503 Az 0.0002 

(29) 

(30) 

(but see the criticisms in [12, section 6.11). By a Monte Carlo study of SAWS with 
variable length and free endpoints, Berret,ti and Sokal [12] obtained 

/I = 2.638 20 f 0.000 04 f 0.000 30 

v = 0.7590 & 0.0062 * 0.0042 

(31) 

(32) 

(95% confidence limits). By a Monte Carlo study using the pivot algorithm to generate 
SAWS with fixed length and free endpoint,s, Madras and Sokal [IO] obtained 

U = 0.7496 f 0.0007 (33) 

(95% confidence limits), where the error is purely statistical (corrections to  scaling 
were unobservably small because they used extremely long walks). 

The exponent a,,ng has, therefore, a curious status: for two-dimensional SAWS 
(and only these!), it has been determined by series-extrapolation methods far more 
precisely than any other exponent; bu t  Monte Carlo measurements of this exponent 
are few-only [ I l l  and the present paper, as far as we know-and are considerably 
less precise than for the other exponents. The principal cause of this lack of precision 
is the severe critical slowing-down exhibited by all known algorithms for simulating 
the variable-length fixed-endpoint ensemble. Even so, the non-local algorithm used 
here did provide a factor-of4 gain in  efficiency compared with the previous work. 

Our simultaneous and independent determination of U and a,,,g allows us to  con- 
firm, by Monte Carlo methods, the series-extrapolation studies that establish numer- 
ically the hyperscaling relation ( 3 )  i n  dimension two .  Analogous checks in dimensions 
three and four are now in progress 
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